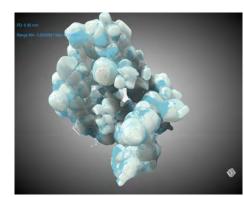
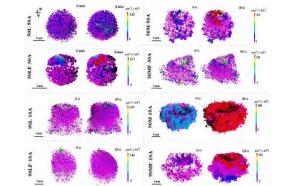


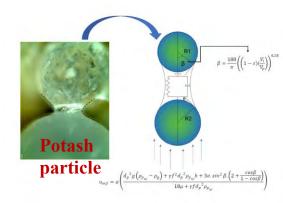
Cultivating Knowledge Agriculture Across the Disciplines


Agriculture and Human Health

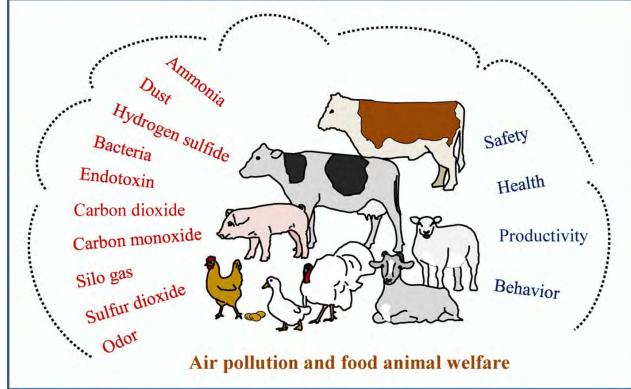

Dr. Lifeng Zhang Lifeng.zhang@usask.ca Professor – Chemical & Biological Engineering Department University of Saskatchewan 18th September 2024

About me----Lifeng.zhang@usask.ca

- Professor in the Chemical & Biological Engineering Department.
- Research areas encompass:
 - Fluidization and multiphase flow systems
 - Clean energy and sustainability
 - Biomass and bioenergy
 - Electrostatics and electrosprays
- Current research projects include:
 - Application of electrostatic and electrospray systems in agriculture
 - Fluidization and fluidized bed drying
 - Synchrotron X-ray imaging of transport phenomena in porous media



Oat Hull Pellets



2

Development and assessment of emerging green technologies for reduction of aerosol risks and hazards in animal farms

Introduction- Air Pollution in Animal Farms

Problems

Solutions

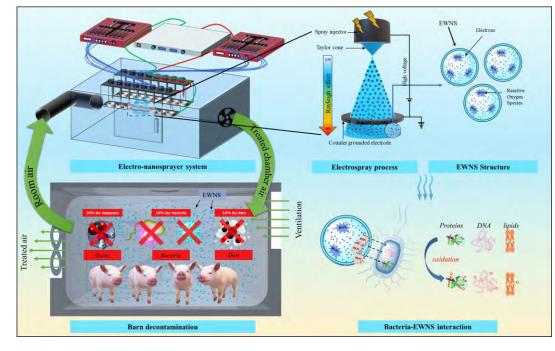
- Manure handling and management strategies have been implemented.
- Air treatment techniques and technology have been developed and investigated.

However...

• Existing technologies have limitations in responding to the challenges in livestock barns.

4

 Exposure to bioaerosols, noxious gases, and concentrated dust in animal buildings has been associated to respiratory symptoms of animals and exposed workers.

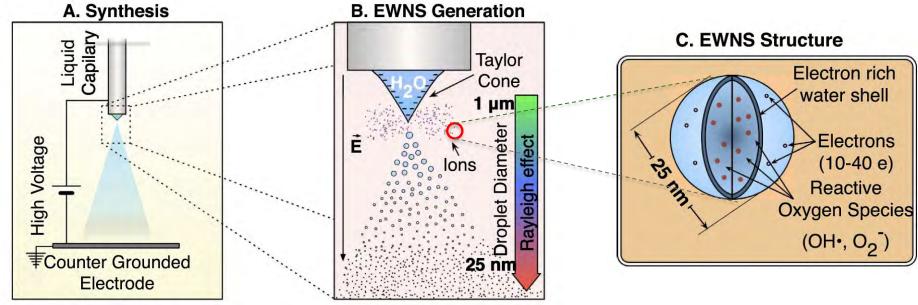

Zhao et al., (2014). Airborne Microorganisms From Livestock Production Systems and Their Relation to Dust. Critical Reviews, Environmental Science and Technology, 44(10), 1071–1128. <u>https://doi.org/10.1080/10643389.2012.746064</u>; Ni et al., 2021, A critical review of advancement in scientific research on food animal welfare-related air pollution, Journal of Hazardous Materials, 408, 124468.

Introduction

Our research team developed and tested two technologies for the reduction of particulate matter (bioaerosol and dust), microbes on surfaces, and gases in livestock facilities.

Electro-nanospray

- $\,\circ\,$ Small-scale pig room in PSCI
- $\,\circ\,$ Swine transport trailer
- Electrostatic particle ionization (EPI)
 - Small-scale broiler rooms in IRDA (Quebec)
 - Large-scale broiler rooms in the Poultry Centre (UofS)

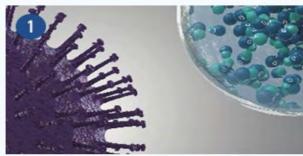


Introduction- Engineered Water Nano-Structures (EWNS)

Electro-nanosprays generate engineered water nano-structures (EWNS) by applying high-voltage, low-amperage current to a metal capillary containing water.

EWNS:

- nanosize
- highly mobile
- highly charged
- non-toxic
- long life span
- Biocidal effects
- No chemical residues



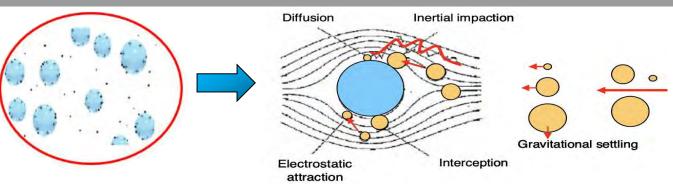
Generate ROS

Introduction

EWNS treatment mechanisms

> Bacteria inactivation

1. EWNS reaches pollutant

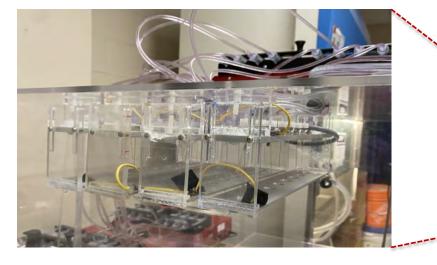


7

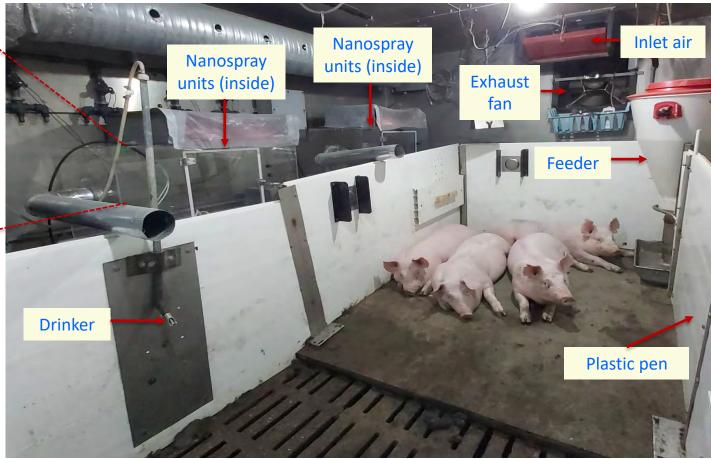
2. Hydroxyl radicals denature 3. Bacteria is inhibited pollutant proteins

Dust removal

Pyrgiotakis, G., McDevitt, J., Yamauchi, T., & Demokritou, P. (2012). Journal of Nanoparticle Research, 14(8), 1–11. Unger, L., Ehouarn, P., & Borra, J. (2003). Journal of Aerosol Science.



Introduction – Microbial Deactivation of EWNS

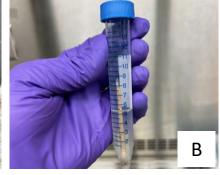


Sources: Vaze et al. (2018), *Food Control*, Huang et al., 2021. *Environmental Science: Nano*, Vaze et al., 2019. *Food Control*, Aminian et al., 2024. *LWT Food Science and Technology*, Huang et al., 2019. *ACS Sustainable Chemistry and Engineering*, Barraza-Garcia et al., 2024. *MRS Advances*, ¹⁹Vaze et al., 2019. *Nanomedicine: Nanotechnology, Biology, and Medicine*,

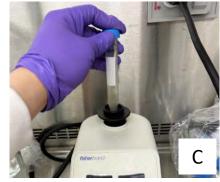
Electro-nanospray: Pilot-scale study (PSCI)

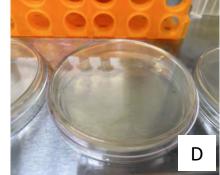
- 1 control, 1 treatment room
- Room size: 4.2 m × 3.6 m × 2.7 m
- 4 grower pigs per room
- 2 trials
- Microorganisms (air and surfaces), dust, gases

Experimental setup in the treatment room


Electro-nanospray: Pilot-scale study (PSCI)

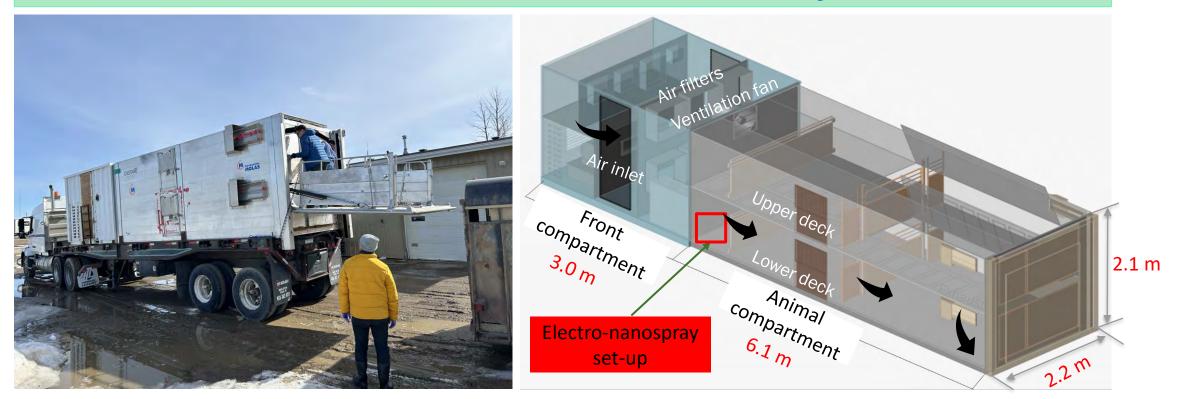
Collection of samples from barn surfaces



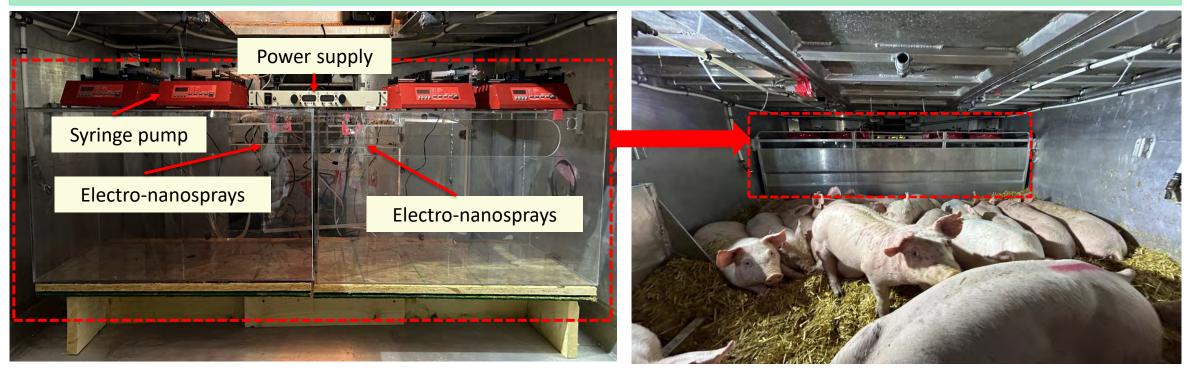

Swabbing on barn surfaces

Contaminated cotton swab in PBS solution

Vortexing of swab samples in PBS solution



Plating of solution on agar plates

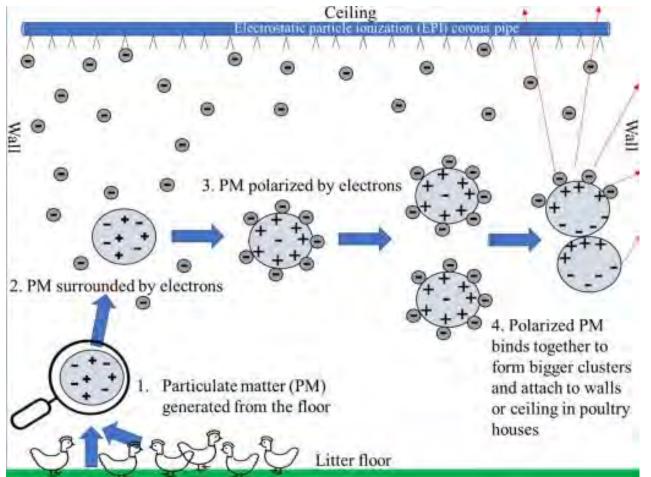

Electro-nanospray: Pilot-scale study (PSCI)

Results		
Parameters	Reduction (%)	
Airborne microorganisms	18	
Airborne dust	16	
Ammonia	18	
Microorganisms on surfaces: concrete, metal, wood, and plastic	55, 50, 52, and 59, respectively	
Pig performance	No negative impact	

Photo and schematic of the swine transport trailer

Electro-nanospray setup inside the trailer

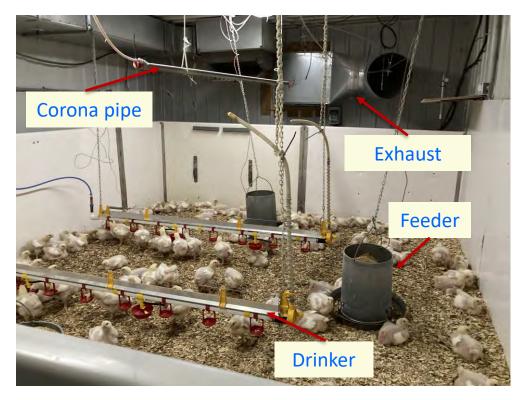
- 1 control trip and 3 treatment trips to towns around saskatoon
- 40 pigs per trip
- Average duration per trip = 8 h


Collection of air and microbial samples inside the trailer

Results	
Parameters	Reduction (%)
Airborne microorganisms	30
Airborne dust	24
Surfaces (metal)	82

Introduction- Electrostatic Particle Ionization (EPI)

Mechanism for dust removal by EPI



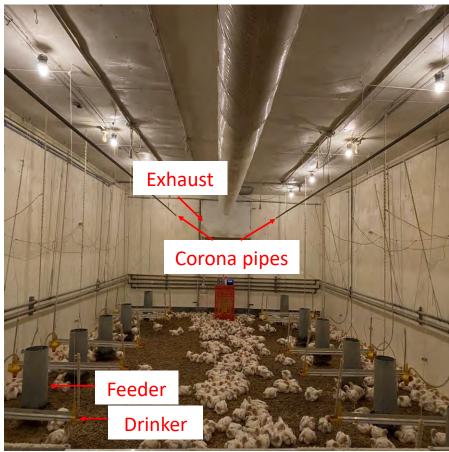
Electrostatic particle ionization (EPI)

- creates a static charge to particles in the air by application of a highvoltage, low-amperage current to a corona pipe
- charged particles are collected on surfaces with opposite charge

Institute for Integrative precision agriculture (IPA), University of Georgia. https://iipa.uga.edu/electrostatic-particle-ionization-technology-for-air-quality-management-in-poultry-houses/

EPI system: Small-scale study (IRDA)

Experimental setup in the treatment room


- 1 control room, 1 treatment room
- Room size: 5.2 m × 3.7 m × 2.0 m
- 150 broiler chickens per room
- 2 trials
- Airborne microorganisms, dust, gases, odour

Corona pipe: 1.8 m long and 25 mm OD with 25-mm long stainless-steel corona points

EPI system: Small-scale study (IRDA)

Results		
Parameters	Reduction (%)	
Airborne microorganisms	57	
Airborne dust (PM ₁ , PM _{2.5} , PM ₄ , PM ₁₀ , total dust)	39-45	
Ammonia	No significant reduction	
Odour	50	

EPI system: Large-scale study (Poultry Centre)

Experimental setup in the treatment room

- 3 control rooms, 3 treatment rooms
- Room size: 11.7 m × 6.4 m × 2.9 m
- 800 broiler chickens per room
- Airborne microorganisms, dust, gases,

Photos – Dust layers

Control room

Treatment room

EPI system: Large-scale study (Poultry Centre)

Results	
Parameters	Reduction (%)
Airborne microorganisms	48
Airborne dust (PM ₁ , PM _{2.5} , PM ₄ , PM ₁₀ , total dust)	40-50
Ammonia	No significant reduction
Mortality rate	No significant impact
Feed conversion ratio	No significant impact

Conclusions and Outlook

- The electro-nanospray technology can potentially decontaminate pig facilities and other animal barns.
- The EPI system has potential to improve the air quality in broiler houses.
- Further tests are required to optimize both technologies for larger scale productions and to validate their effectiveness, feasibility, and impacts on animal productivity and health of exposed workers prior to their full commercial application.

Acknowledgments - Project Team

- UofS: Lifeng Zhang; Shelley Kirychuk; Huiqing Guo; Karen Schwean-Lardner; Myra Martel; Brooke Thompson; Roger Bolo; Angelo Alluag; Mehdi Foroushani; Felipe Garcia; Jordan Si; Yingjie Yang
- PSCI: Bernardo Predicala; Alvin Alvarado; Marjorette Baguindoc; Sam Gelowitz; Karu Bandaralage
- IRDA: Stephane Godbout; Dalila Larios
- Laval University: Caroline Duchaine; Valerie Letourneau

Acknowledgements

- Agriculture and Agri-Food Canada
- Agrivita Canada Inc.
- Government of Saskatchewan-ADF
- Research and Development Institute for the Agri-environment (IRDA)
- CRIUCPQ Université Laval
- Prairie Swine Centre Inc. (PSCI)
- Canadian Centre for Rural and Agricultural Health
- Poultry Research and Teaching Unit- UofS
- University of Saskatchewan
- Chicken Farmers of Saskatchewan (CFS)

INSTITUT UNIVERSITAIR! DE CARDIOLOGIE ET DE PNEUMOLOGIE DE QUÉBEC

