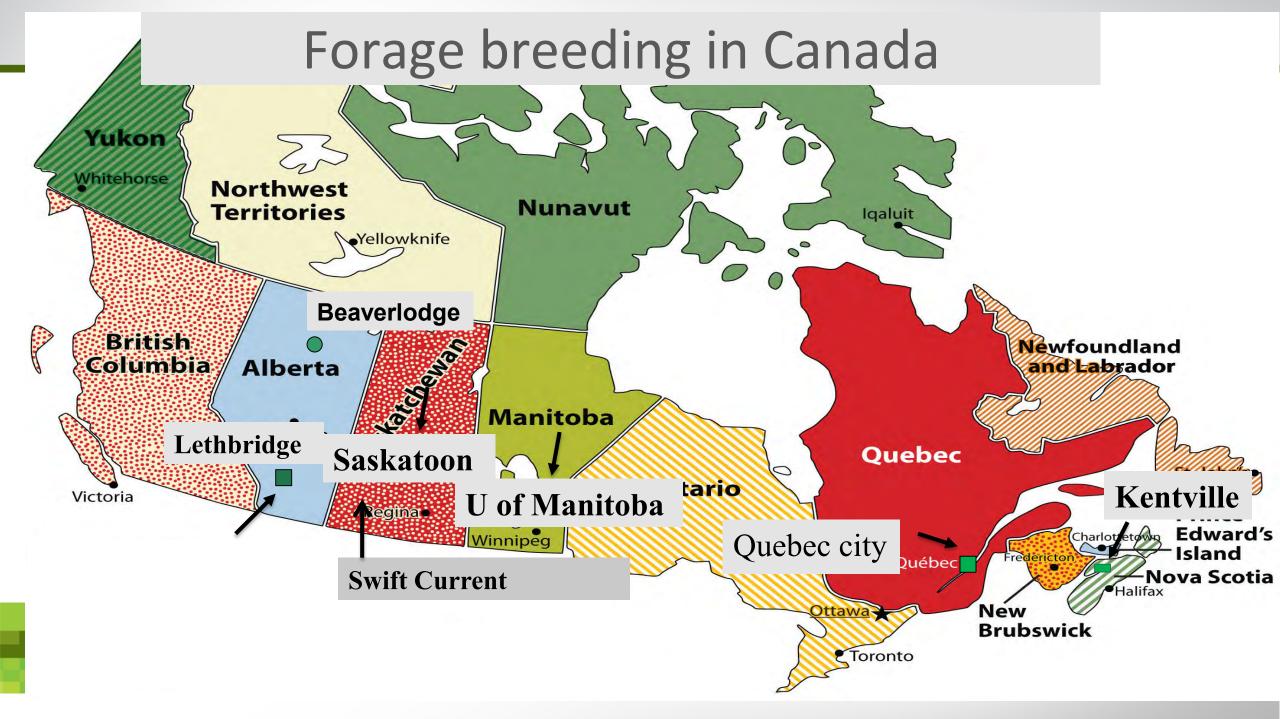


Achievements & Challenges in Breeding Perennial Forage Crops in Western Canada

Bill Biligetu


Dec 6 2022

Outline

- Forage breeding
- Some grass breeding projects
- New grass variety update
- Legume (alfalfa) breeding (salt-grazing)
- Future perspectives

Perennial forage

Beef and dairy industry

Increase livestock cash receipts to \$3 billion

Forage Seed industry

SASPDC

\$ 30-40 millions in 2022

Environment & Carbon economy

Amount of	N fixed in Western Canada
	<u>lbs N / acre</u>
Alfalfa	100 - 250
Fababean	80 - 160
Pea	50 - 150
Soybean	70 - 120
Lentil	30 - 100
Dry Bean	5 - 70

UofS Forage Breeding Program

Hybrid brome Meadow brome

Crested wheatgrass

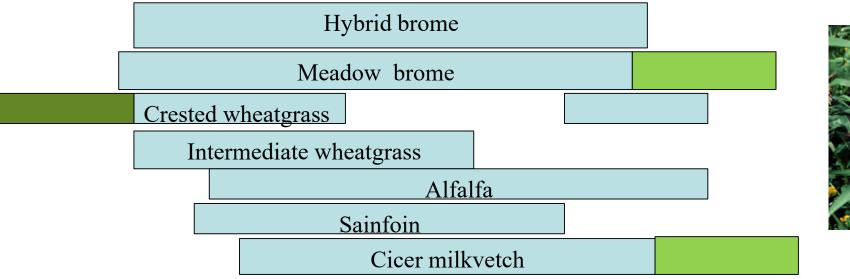
Dr. Andrew Sharpe's on-going research on reference genome development of bromegrass

Global Institute for Food Security

Whether the set of the

Minor species

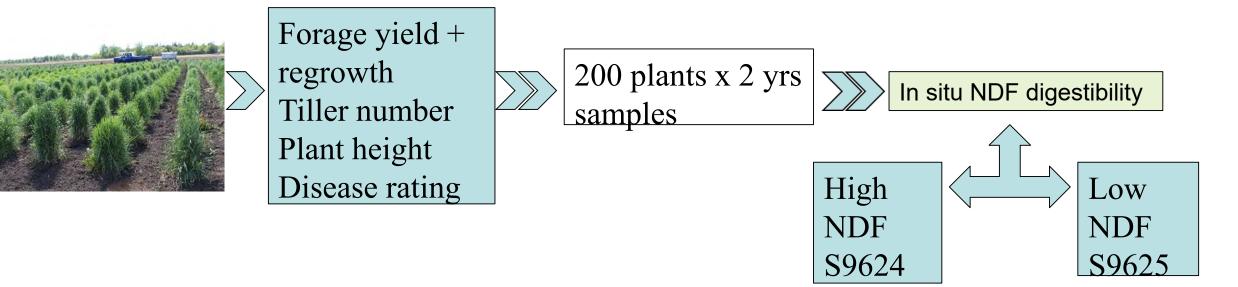
- Orchardgrass
- Tall fescue
- Timothy


alfalfa

sainfoin

Species fit to the forage system

April May June July August September October



Timothy – water logging tolerance, major hay for horses **Hybrid wheatgrass** – salinity tolerance

Saskatoon grass breeding

- Hybrid brome high fiber (NDF) digestibility
- Collaborative research with Dr. Greg Penner's lab
 - NDFd forage intake, total energy, high animal gain/milk production
 - NDF is about 50-60% of forage dry matter

S9624 – high NDF digestibility

Table 1. Vigor score of hybrid brome breeding lines and cultivars in a spaced nursery in 2020 and 221 near Clavet, SK.

Cultivar	Spring vigor (1-5 scale)			Ha	1-5 scale)	
	2020	2021	2-yr means	2020	2021	2-yr means
AC Knowles	2.8b	2.9ab	2.8b	2.7b	3.1b	2.9c
AC Success	2.9b	2.6c	2.7b	3.0a	3.2ab	3.1b
S9624HB	2.7b	2.7bc	2.7b	2.9ab	3.0b	3.0bc
S9625HB	3.1a	3.0a	3.1a	3.1a	3.5a	3.3a
P value	0.01	0.007	<0.01	0.004	0.002	< 0.001
SEM	0.11	0.1	0.08	0.09	0.12	0.09

Note: Each value represents means of 90 individual plants

Table 2. Forage yield (kg/ha) of hybrid breeding lines selected for high and low NDF digestibility in sward density trial near Clavet, SK

		2020 DM Yield				2021 DM Yield				
Cultivar	Height /cm/	Cut 1 June 29	Cut 2 Sep 10	Total Yield kg/ha	Yield % of AC Success	Height /cm/	Cut 1 June 28	Cut 2 (no cut)	Total Yield kg/ha	Yield % of AC Success
AC Knowles	114	4634	287	5238	93	63	1727	-	1727	86
AC Success	115	5447	228	5630	100	65	2002	-	2002	100
S9624HB	116	5088	181	5291	94	61	1660	-	1660	83
S9625HB	116	5063	221	5269	94	65	1792	-	1792	90
P-value	0.96	0.61	0.35	0.69	_	0.82	0.62	-	0.62	_
SEM	2.51	337	53.9	365	-	3.23	173	-	173	_

Table 3. Nutritive value of hybrid breeding lines selected for high and low NDF digestibility at early anthesis stage near Clavet, SK

		2021				
Cultivar	% NDF	%	%	% NDF	%	%
	% NDF	ADF	Protein	70 NDF	ADF	Protein
AC Knowles	61.5	37.2	9.4	59.3	31.4	11.6
AC Success	61.5	36.1	10.0	58.9	30.6	12.4
S9624HB	60.8	36.9	11.2	57.2	30.2	12.8
S9625HB	62.4	37.9	9.1	59.4	31.6	11.8
P-value	0.11	0.16	0.34	0.12	0.11	0.44
SEM	0.65	0.59	0.58	0.45	0.38	0.48

• Highly digestible hybrid brome development is possible, but there is a potential risk of yield reduction. Further selection is underway...

Saskatoon grass breeding

Crested wheatgrass

UNIVERSITY OF SASKATCHEWAN

Dr. Alison Ferrie's (NRC Saskatoon) on-going research on developing **DH lines** of crested wheatgrass

- Value to genomic and molecular study
- Cross to produce new genotypes

Diploid

Tetraploid

Hexaploid

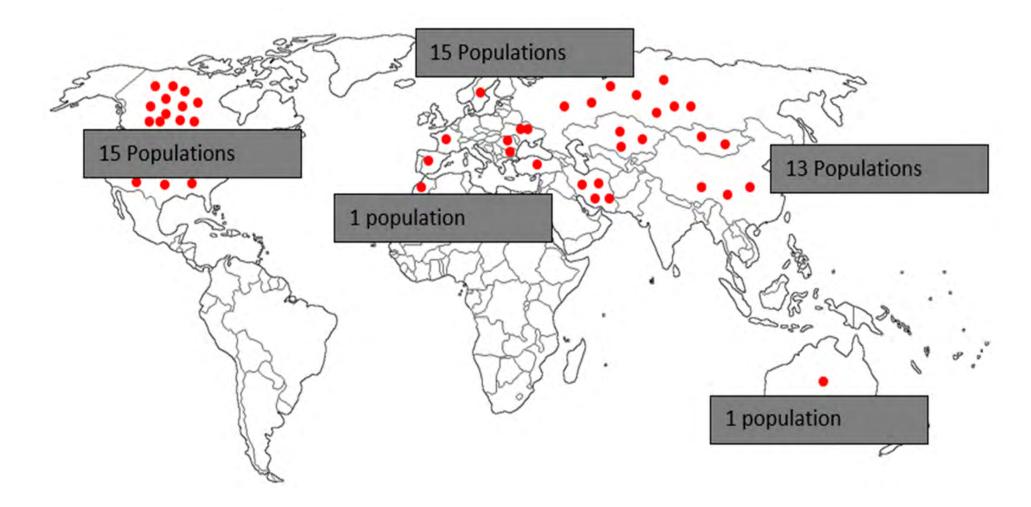
www.usask.ca

Crested wheatgrass

Value: drought tolerance, early greenness for early grazing Breeding goal: Late maturity

April 21 2015

Alfalfa



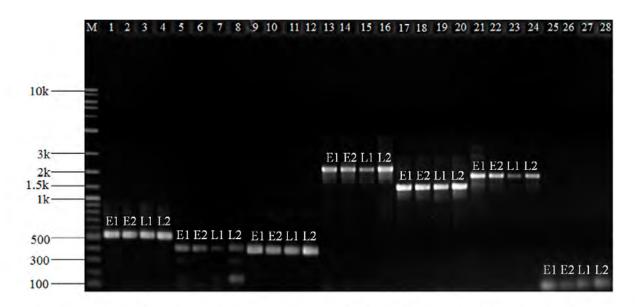
Seed head development

Germplasm collection

Total: 45 populations

Selection for late maturity in crested wheatgrass

- Genetically very diverse
- Maturity
 - 5 days on average
- Later maturing lines
 - A few days
 - Leaf-to-stem ratio better choice?



RNA-Seq Study –DEGs Collaborative research with Dr. Yong Bi Fu's lab at AAFC Saskatoon

Table 3. List of 22 (out of 5246) differentially expressed genes (DEGs) associated with flowering at the stem elongation stage (VS) between the early and late maturing lines of crested wheatgrass.

Gene ID ^a	Putative Function	Nr ID	log ₂ FC	FDR
DN67303-c0-g12	flowering locus T [Lolium perenne]	AIE58042.1	-11.5	1.90×10^{-6}
DN59102-c0-g1	timing of cab expression 1	AMK48976.1	-10.9	7.50×10^{-6}
DN74264-c0-g1	SYD isoform X1	EMT16433.1	-10.7	1.10×10^{-5}
DN74350-c1-g11	flowering locus T [Lolium perenne]	AAW23034.1	-10.4	2.40×10^{-5}
DN60639-c0-g1	transcriptional corepressor SEUSS [Oryza sativa]	BAJ98061.1	-10.3	2.70×10^{-5}
DN73561-c0-g2	GIGANTEA [Oryza sativa]	CDM81775.1	-10.3	3.30×10^{-5}
DN73410-c0-g1	nucleic acid binding [Zea mays]	BAJ87586.1	-10.0	6.50×10^{-5}
DN75888-c2-g3	cryptochrome 2	ABX58030.1	-9.9	8.10×10^{-5}
DN66158-c0-g2	HD3A_ORYSJ	BAH30246.1	-9.9	8.20×10^{-5}
DN76849-c0-g1	phosphatidylinositol 4-phosphate 5-kinase 1-like	EMS61702.1	-9.7	1.23×10^{-4}
DN62519-c0-g1	spotted leaf 11	BAJ85648.1	-9.6	1.61×10^{-4}
DN67113-c2-g1	auxin response factor	EMT32630.1	-9.2	3.60×10^{-4}
DN66104-c0-g1	COL10_ARATH	Q9LUA9.1	-9.2	1.12×10^{-5}
DN68702-c0-g2	SWI SNF complex subunit SWI3B	EMT14023.1	-9.1	4.87×10^{-4}
DN69810-c0-g1	CONSTANS CO6 [Zea mays]	BAJ98422.1	-9.1	$4.74 imes 10^{-4}$
DN77293-c0-g2	probable serine threonine- kinase vps15 isoform	EMT17455.1	-9.1	4.74×10^{-4}
DN70348-c0-g2	MADS-box transcription factor 18	XP_006657934	-9.1	1.28×10^{-5}
DN48214-c0-g5	constans-like 1 [Picea abies]	EMT25416.1	-9.0	5.74×10^{-4}
DN64729-c0-g4	MADS-domain transcription factor [Zea mays]	ABF57916.1	-8.8	9.36×10^{-4}
DN74533-c0-g2	phragmoplast-associated kinesin [Oryza sativa]	EMT21759.1	-8.8	$8.80 imes 10^{-4}$
DN66288-c0-g1	Os01g0687700 [Oryza sativa]	CDM83875.1	8.9	$7.84 imes 10^{-4}$
DN64871-c0-g1	gamma-glutamylcysteine synthetase	BAJ84988.1	9.3	$2.75 imes 10^{-4}$

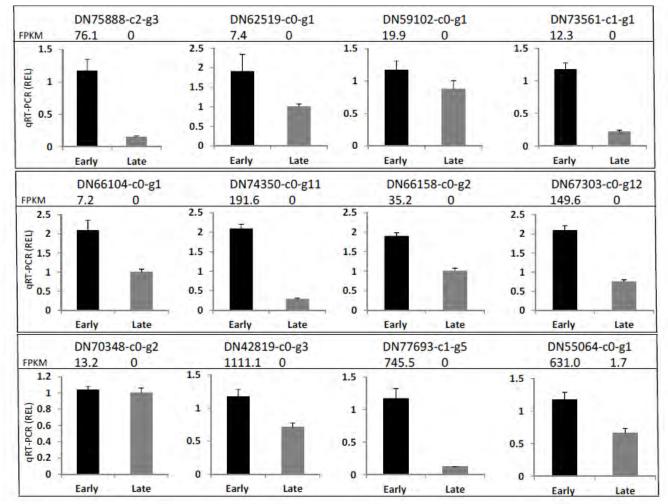

^a The underlined DEGs are related to photoperiod pathway. FDR: false discovery rate.

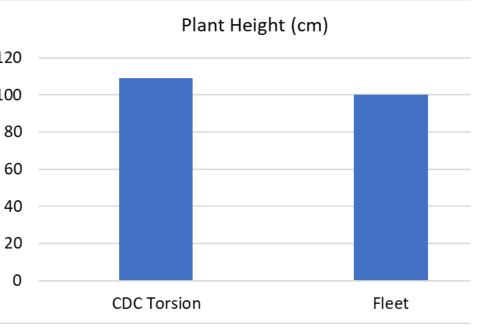
Figure 3. The PCR amplifications of the seven (out of nine) selected flowering-associated differentially expressed genes at the stem elongation stage of crested wheatgrass. M: DNA ladder; Lane 1–4:

qRT-PCR analysis of the gene expression of 12 DEGs at stem elongation

Marker assisted screening might be important for the development of Later maturing crested wheatgrass

Figure 4. qRT-PCR analysis of the gene expression of 12 differentially expressed genes selected at the stem elongation stage between the early and late maturing lines of crested wheatgrass. Each panel shows gene ID and RNA-Seq readings of fragments per kilobase of transcript per million mapped reads (FPKM) for both lines. REL: relative expression level.

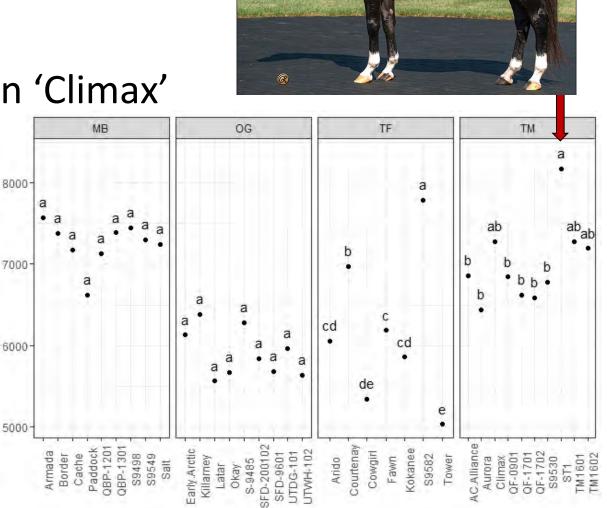
New Grass Cultivars


'CDC Torsion' Meadow brome: released in 2020

- Licensed to Brett Young Seed
- improved biomass/regrowth yield

Table 1 Forage dry matter yield (1/g/ha) of \$05/10 meadowy brome

Zone	Location	Year	Fleet	S9549
Brown	Swift Current	2018	1787	1965
		2019	2246	2228
Dark Brown	Saskatoon	2018	5225	5153
		2019	7370	7871
Black	Melfort	2018	4203	4039
		2019	6044	7165
Mean	Station-year	6	4479	4737
	% Fleet		100	106



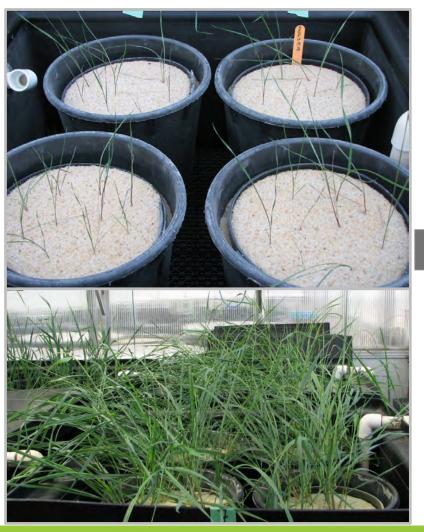
CDC Tiznow Timothy (ST1)

- 7% higher biomass yield than 'Climax' (15 site –year)
- 45% higher seed yield than 'Climax' (4 site –year)

Hybrid wheatgrass S9615

- Proposed variety name: CDC Salt King
- Main use: saline area
- > Selected for higher seed yield without reducing salt tolerance
- ➤ 4 site-year test: 17.6% higher seed yield than AC Saltlander
- Slightly early maturing (2-3 days) compared to AC Saltlander
- Shorter rhizome than AC Saltlander
- Good salt tolerance
- No major disease issue

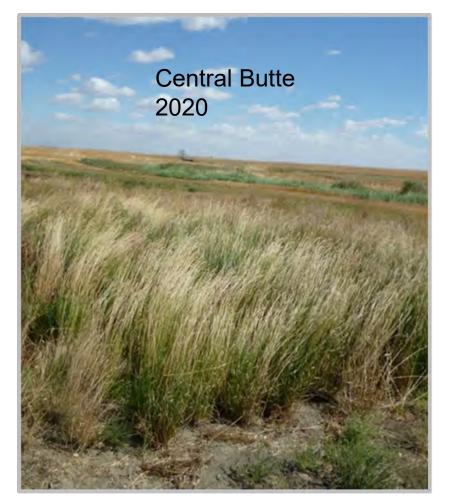
Hybrid wheatgrass S9615 – Breeder seed plot (2021)



New Grass Cultivars

Hybrid wheatgrass

EC=16dS/m

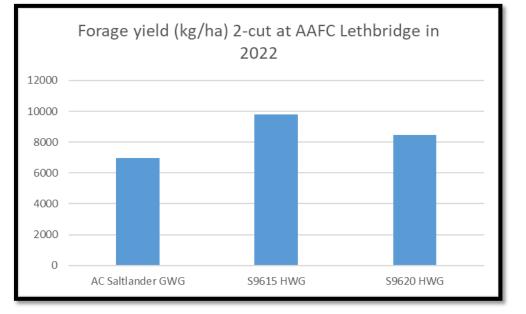


AAFC Swift Current Salt lab

18 ds/m E.C.

Hybrid wheatgrass

Strongfield SK 2019


EC=9.8 dS/m

EC=9 dS/m

Table 2. Perfo Current, SK	ormance	of hybrid whea	tgrass S9615 a	t 18 dS/m E.C	C. salinity leve	el at Agricu	lture and Ag	ri-Food Canada	a Salt lab, Sv	vift
Variety	Test ID	7-d Emergence (%)	14-d Emergence (%)	Survival (%) at 70th day	Plant Height (cm)	Biomass (g/plant)	Tiller/plant	crude protein (% DM)	ADF (% DM)	ND (% D
S9615	S015	83	88	90	65.4	4.0	18	20.8	27.7	5
AC Saltlander	S001	81	83	89	60.1	3.3	12	20.9	27.5	5
S9604	S004	69	73	79	65.2	2.7	12	19.9	29.1	5

Table 3. Seed yield (kg/ha) of S9615 in non-saline soil									
		S9615	AC Saltlander	S9600					
Saskatoon SK	2019	509	446	445					
	2020	434	297	314					
Clavet SK	2021	420	414	360					
Outlook SK	2021	84	77	65					
	Mean	362	308	296					
	% AC								
	Saltlander	117	100	96					

Forage legume breeding

Evaluation of salinetolerant forage mixtures for establishment, forage yield, and saline soil remediation.

> Alex Waldner M.Sc. Candidate Plant Sciences

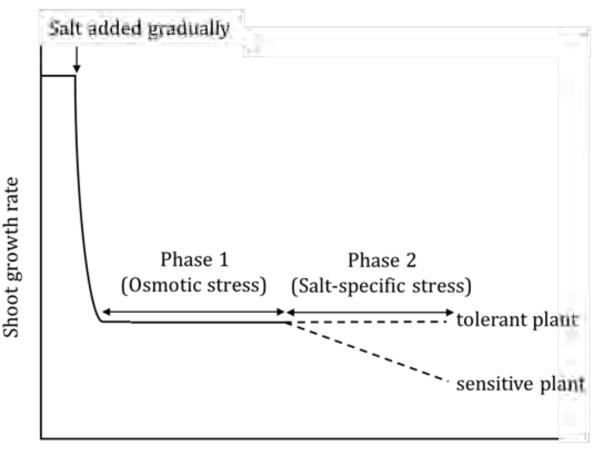
Collaborative research with Dr. Jeff Schoenau' s lab (Soil Science)

CDC Salt King hybrid wheatgrass Salt tolerant alfalfa

Soil Microbial Biomass

Pollinator Activity

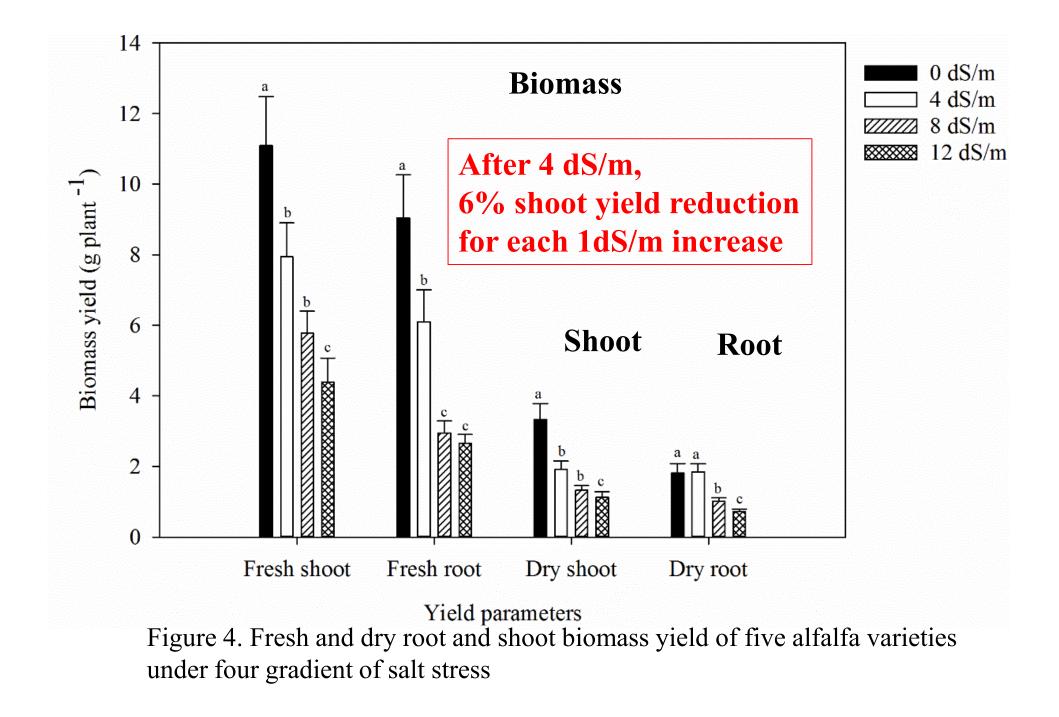
Forage Legume breeding


Alfalfa salt tolerance

NIVERSITY OF

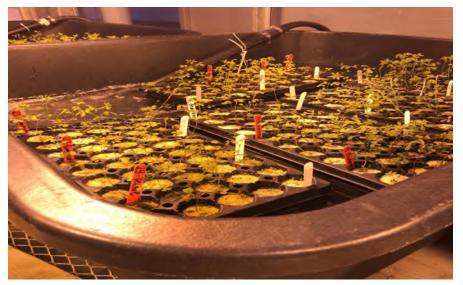
ASKATCHEWAT

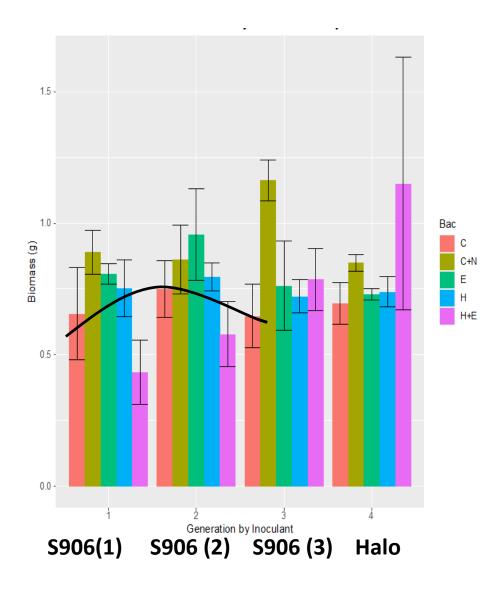
- Moderate tolerance
- vor 50 varieties in USA
- Germination under salt
- > Bridgeview
- ≻ Halo
- Rugged



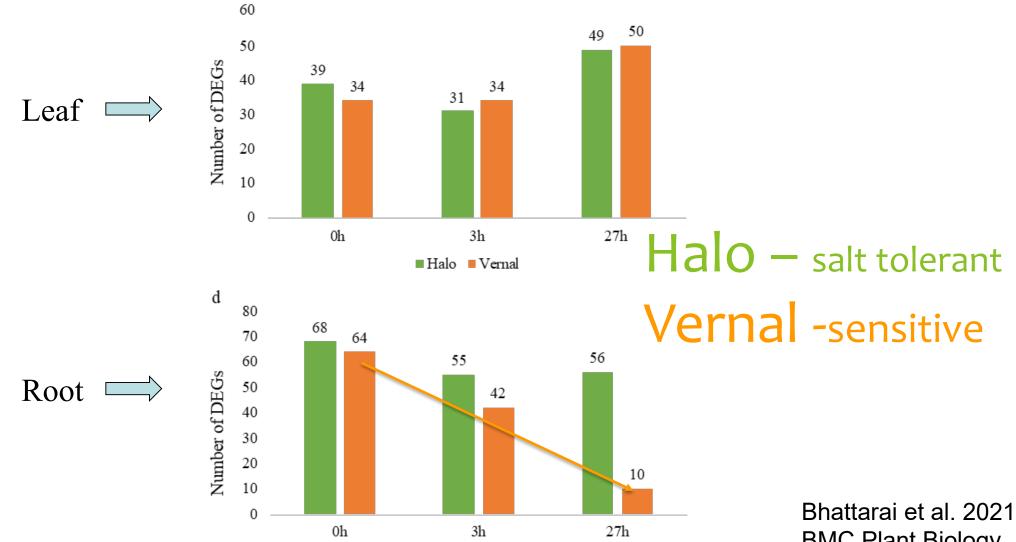
Time (days to weeks)

Figure 2. Two-phase growth response to salinity (From Munns, R. 2005. New Phytologist; 167:645–663.)


www.usask.ca


Selection for salt tolerance (Current project)

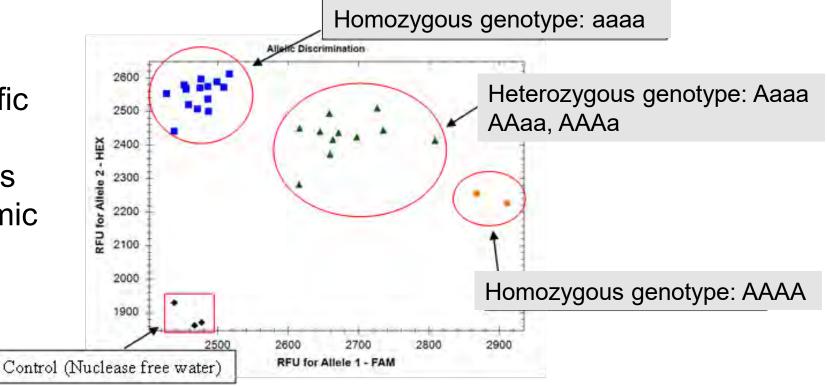
- Diverse genetic background
- Test breeding lines in saline areas
 - Germination
 - Germination stage tolerance \neq mature plant tolerance
 - Growth
 - Winter hardiness
- Populations: S906(1), S906 (2), S906 (3), S906 (4), S906(5)


Shoot Biomass vs Alfalfa Generation by Inoculant at 60 days in 8ds/m

M.Sc candidate Seth Lundell's Research

C =Control C+ N= 100kg/ha N fertilizer E=rhizobia for N fixation H= Halomonas maura E + H= rhizobia + salt tolerant bacteria

RSITY Number of differently expressed gene (DEGs) *FCHEWAN*


BMC Plant Biology

OF

Application of KASP method for validating SNPs in alfalfa salt tolerance

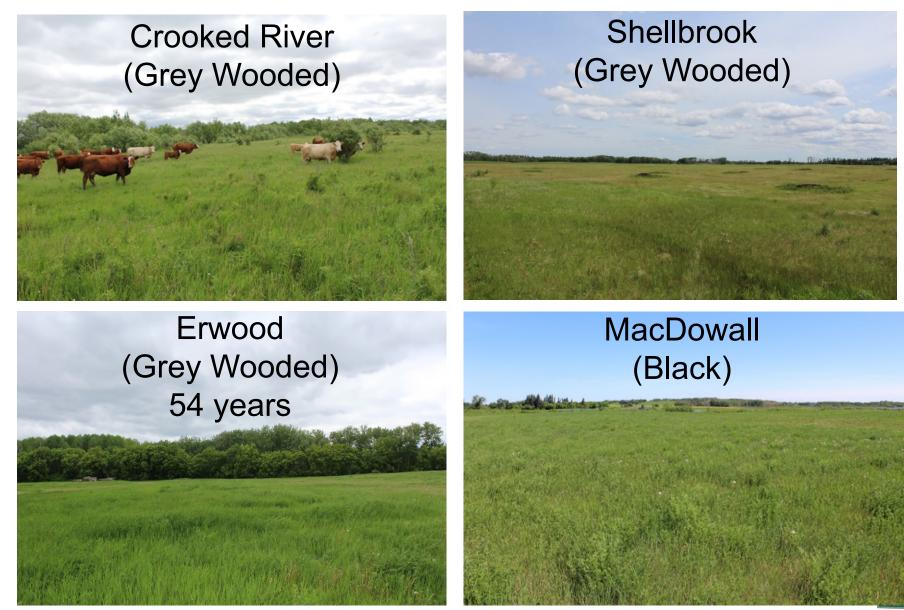
- Kompetitive allele-specific PCR (KASP) assay
- Validate significant SNPs associated with agronomic traits

Selection of Legumes under intensive grazing

- Dr. Bart Lardner's group
- ADF/SCA funded project
- 3- yrs of grazing pressure at LFCE
- 0.3 ha x 4 replications
- Sainfoin grass
- Alfalfa –grass
- Crossed 1 breeding population/each species
- More results to come....

Photo by: Cassidy Sim and Lana Height

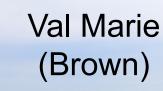
Saskatoon program- Development of grazing tolerant alfalfa


- Alfalfa stand
 25+yr long grazing
 history
- 4 Soil zones
- 14 sites
- 30 plants/site

www.usask.ca

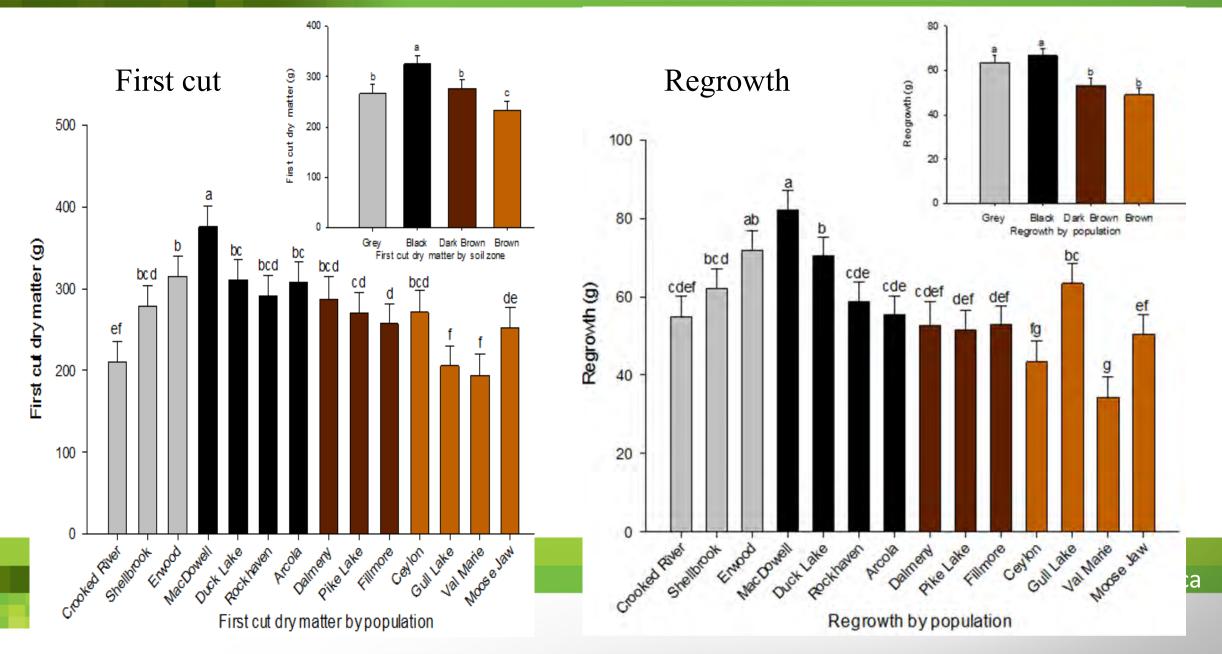
Long-term grazing sites (> 25 years)

WHAT THE WORLD NEEDS

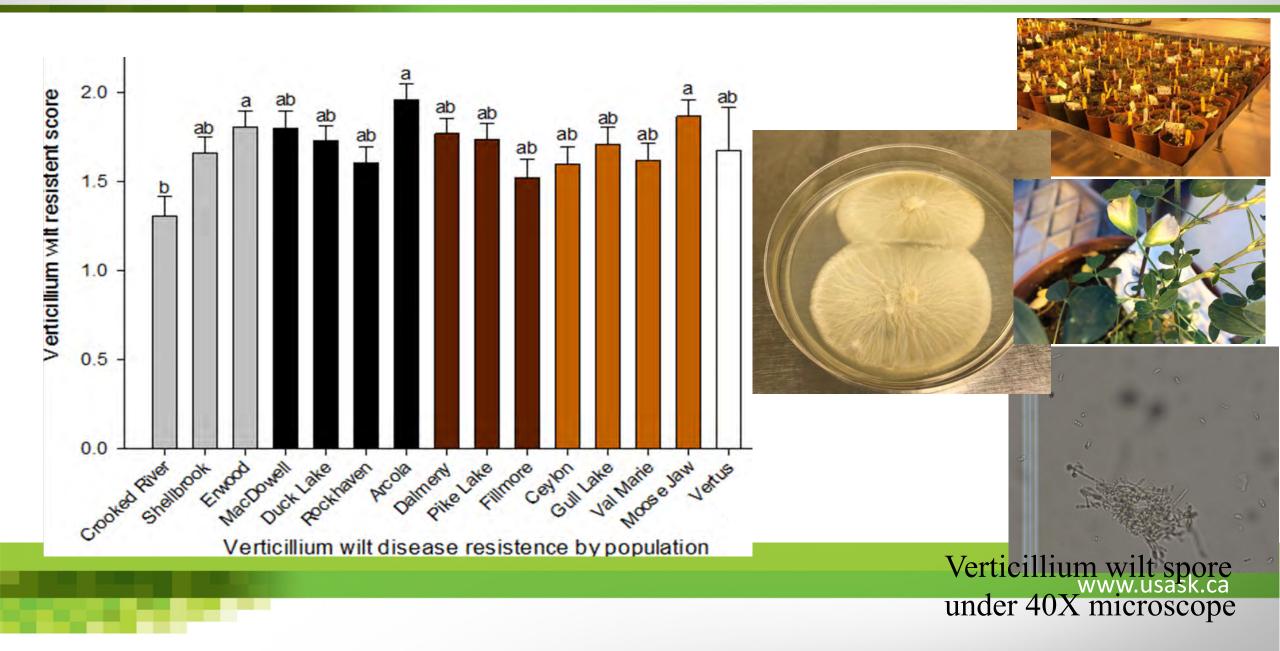


Long-term grazing sites (> 25 years)

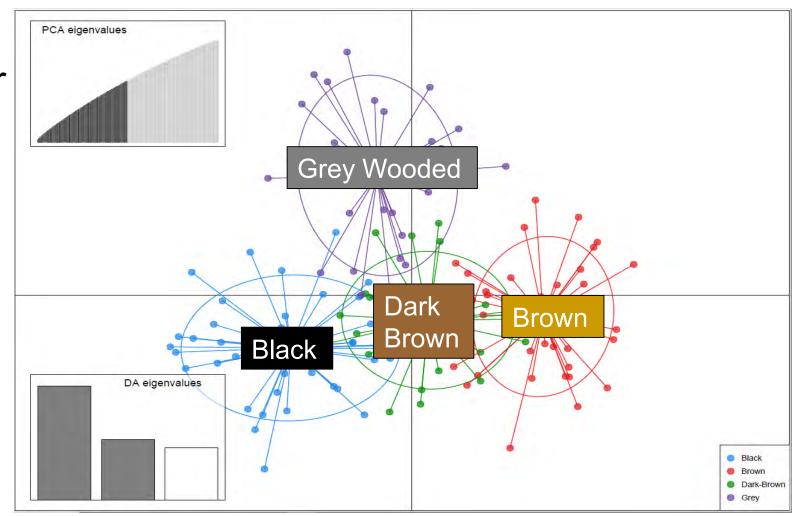
Arcola (Black)



2017 summer

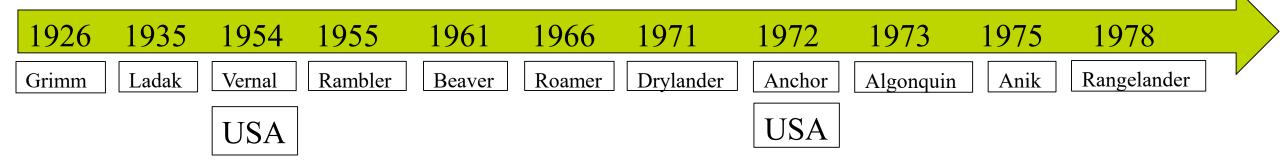


Forage yield



Verticillium wilt disease evaluation

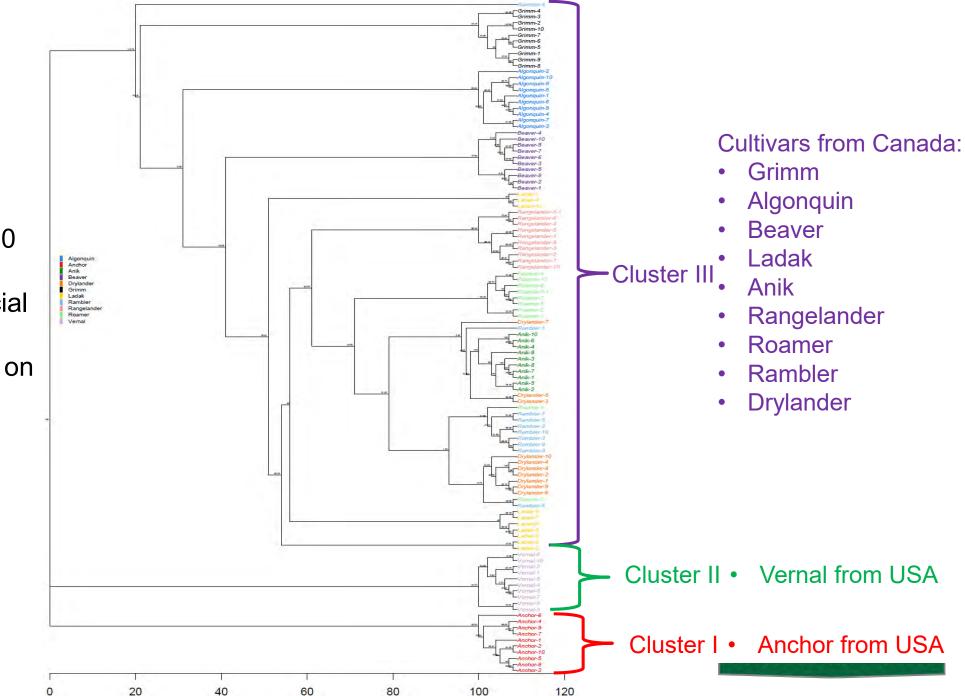
Genetic variation by four soil zones based on **19,853 SNPs** of 142 alfalfa genotypes representing 14 alfalfa populations from longterm grazing sites

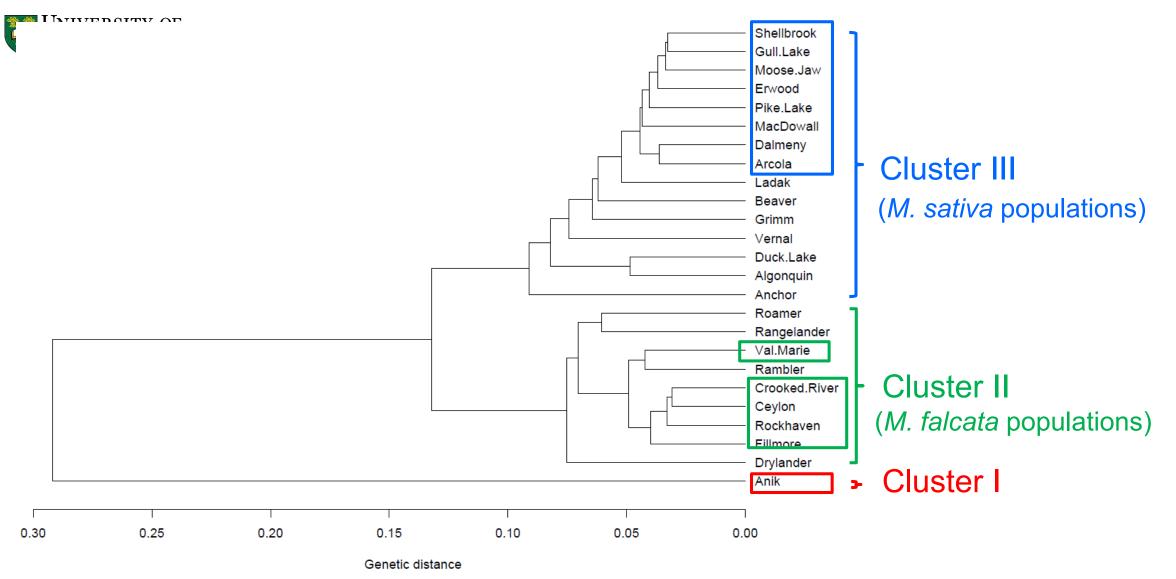


Wang et al. Scientific report 2022

Plant materials:

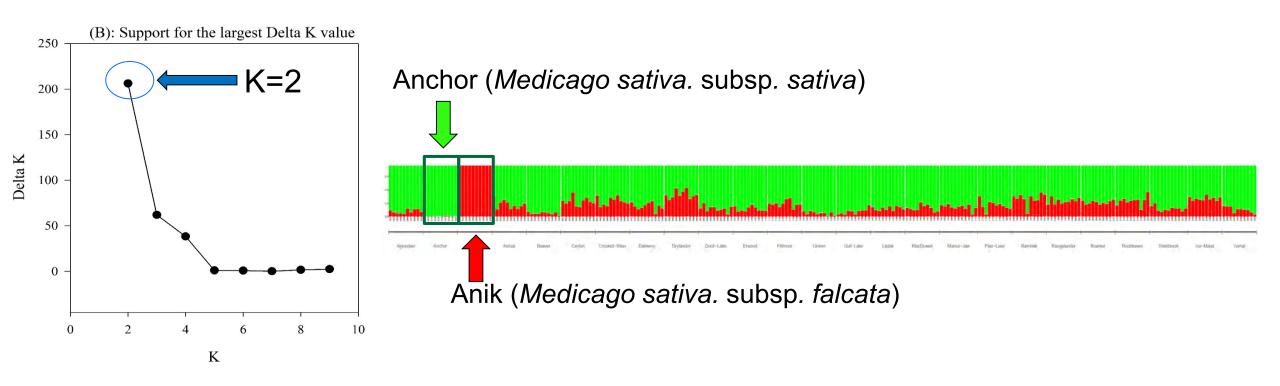
- Alfalfa populations from long-term grazing (> 25 years) sites
- 11 commercial alfalfa cultivars released from 1926 to 1980 in Western Canada




Methods:

Genotyping-by-sequencing (GBS)

Genetic relationship of 110 alfalfa genotypes representing 11 commercial alfalfa cultivars released from 1926 to 1980 based on 19,853 SNPs



Genetic relationship of 14 alfalfa populations from long-term grazing sites with 11 commercial alfalfa cultivars released from 1926 to 1980 in Western Canada

Structure analysis of genetic background

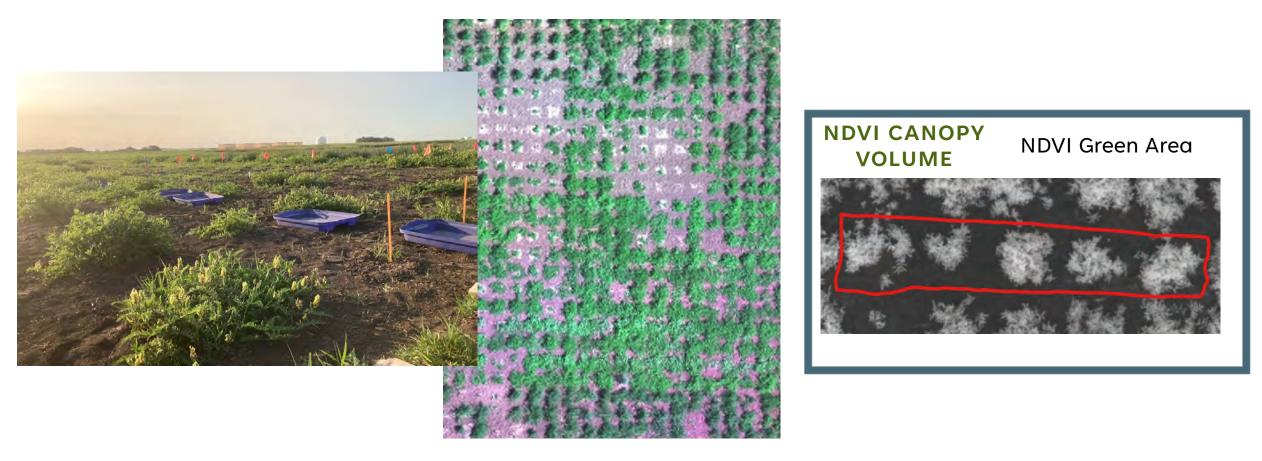
Alfalfa selection from Long-term grazing sites

Alfalfa forage	e yield (kg/ha)	trial at Clave	t SK			
Cultivar	2020		2021		2022	
	Forage yield	% of Beaver	Forage yield	% of Beaver	Forage yield	% of Beaver
Beaver	7,789	100	3,175	100	6,727	100
Unicorn	6,684	86	3,531	111	6,094	91
Rangelander	7,174	92	3,464	109	6,002	89
SL905AF	6,456	83	3,743	118	6, 77 9	101
CRS1001	6,865	88	2,813	89	5,397	80
AC Grazeland	7,268	93	3,308	104	5,319	79
LSD	1114.42		248.02		1479.00	
P-value	0.20		0.002		0.05	
CV %	6.80		9.65		10.09	

BE WHAT THE WORLD NEEDS

Forage breeding: future perspectives

UNIVERSITY OF SASKATCHEWAN College of Agriculture and Bioresources AGBIO.USASK.CA


Application of newer technologies

Precision phenotyping

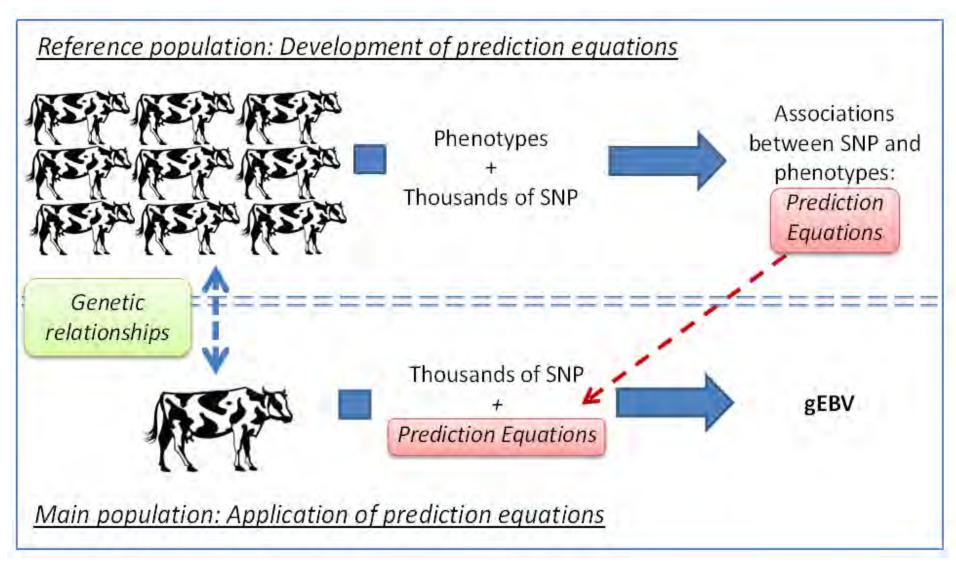
- UAV-Multi-spectral (Camera) phenotyping
- 10-15 min/flight
- NDVI
- Plant height
- Density

David MacTaggart (M.Sc. Candidate)

CORRELATIONS WITH FORAGE YIELD

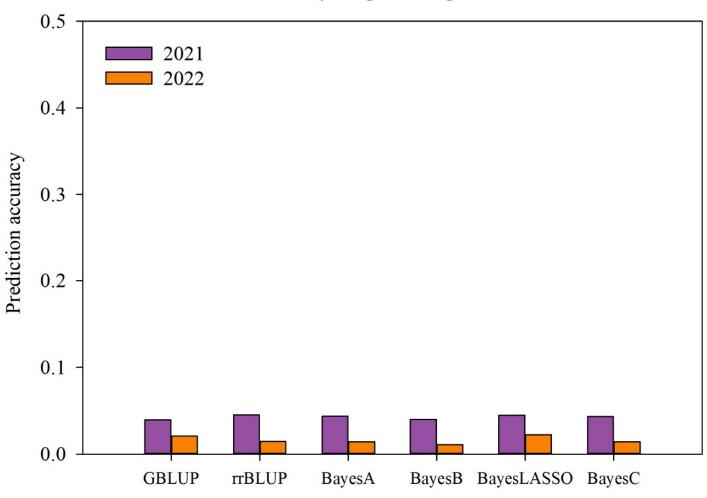
	Forage	DMY	
Forage DMY	1		
Max Stem Length	0.69	* * *	
Leaves/Stem	0.60	* * *	1 st
Stem Density	0.68	* * *	
NDVI Green Area	0.92	* * *	Harvest
NDVI Canopy Vol.	0.87	* * *	
	Forage	e DMY	_
Forage DMY	1		
Max. Stem Length	0.60***		
Leaves per Stem	-0.07		Stockpile
Stem Density	0.40***		Harvest
Rhizome Spread	0.39***		TUTVESt
NDVI Green Area	0.66***		
NDVI Canopy Volume	0.4	14***	

Application of marker assisted selection


► KASP method is an example

► RNA-Seq can generate lots of SNPs

➤Genomic selection



Genomic selection: Alfalfa

https://wiki.groenkennisnet.nl/display/TAB/Chapter+8.15%3A+Genomic+selection

Genomic prediction of plant height at Saskatoon in 2021 and 2022

Genomic selection accuracy for plant height at Saskatoon in 2021 and 2022

Figure. Comparison of prediction accuracy of six additive genomic selection models for plant height at Saskatoon in 2021 and 2022.

Genomic selection models

Then the genomic selection model with the highest prediction accuracy was used to calculate the GEBV of plant height for testing populations (117 genotypes) at 1000 random runs

GEBV at	File Home Insert	Page Layout Formulas Data Rev	iew View Automate	Help JMP Acrobat	Here I have a start	Bad Good		
				General ~	Normal	6000	Neutral	
each run	Format Painter		Merge & Cer		nal Format as Calculation	Check Cell Explanatory	Followed Hy	Delete Format
	Ch, ard 5	Fom		Fg NUMPER		Styles		Cells Editing
		A A Construction						
	Q2 *	√ f _x Genotype ID						
	A B	C E	D E F		н I и	K	LM	0
	1	Run 1		Run 2		Run 3		Run 4
	2 Genotype ID BLUE value	Senomic estimated breeding value	Genotype BLUE value	Genomic estimated breeding value	Genotype BLUE value	Genomic estimated breeding value	Genotype BLUE val	
	3 22 57.89867905		139 96.3333333	84.04718325	12 87.3333333	85.46324189		92. 84.11848807
	4 191 87	84.0934983	48 83	84.13857754	133 98.6666666	82.62011428		
	5 200 98 6 176 97.3333333	85.91853512 86.91034636	179 8 96 78.3333333	85.6504718 84.93135398	45 87.6666666	85,96019526		9 83.23615189 333 82.25449506
	7 122 73.89867905	86.91034030	25 69.8986790	84.93135398	14 7	87.00464579		
	8 14 74	86.32771286	47 88.66666666	84.46603281	41 83.8333333	86.03599947		
	9 88 78.66666667	85.68610845	27 91.8333333	86.77749562	137 71.1666666	88.74647401		
	10 125 81.66666667	85.65011876	32 65.9032698	86.25543515	2 88.3333333	89.560834		9 88.58231415
	11 180 103.6666667	88.78573139	153 7	86.41970865	35 84.3333333	88.11754846		
	12 78 97.16666667	87.96224032	165 97.1666666	83.59939003	132 95.6666666	84.31414986		
	13 107 85.83333333	87.36082054	114 98	86.53601347	232 84.3986790	85.9975344	103	7 82.46418952
	14 5 77.19346029	84.36926538	11 83.40326985	84.15317216	148 84.6666666	82.53995427	7 213 89.6666	6666 83,75898052
	15 19 103.1980511	88.46875441	150 75.3333333	87.09330792	99 95.9032698	79.71885175	5 184	70. 86.86913175
	16 207 65.39867905	84.87841626	233 80.5	84.39235336	170 6	90.93335109	54	9 85.402697
	17 86 97	83.71907569	213 89.6666666	86.38972013	88 78.6666666	85.44607677	7 39	10 86.65288551
	18 208 81.40326985	83.39883567	40 97.8333333	83.89790027	206 90.	85.23444396		9 80.51062513
	19 37 96	85.74692828	20 98	84.00509814	100 80.8333333	83.40616411	L 85	9 85.02007047
	20 217 93.39867905	86.4939674	145 92	85.84528475	113 61.3333333	81.5828264		
	21 220 90.89867905	85.54502726	18 86	85.15183005	95 64.6666666	86.18270713	3 113 61.3333	
	22 222 65.69805109	87.54446446	154 92	88.00872397	61 9	83.55706226		
	23 112 84.66666667	85.17002793	206 90.5	84.41539728	129 9	84.73342473		
	24 56 90.5	83.34073906	177 83.9032698	80.49296225	17 9	81.61544025		
	25 150 75.33333333	86.06142446	7 85.1666666	85.48314814	121 87.6666666	86,14572252		9 83.77025845
	26 106 93	86.89809589	192 79.5	85.16037038	60 102.833333	84.72009426		
	27 204 85.69805109	87.10405259	113 61.33333333	83.22109605	53 76,3986790	86.83178419		
	28 90 94.83333333	84.92631401	183 81.3333333	83.86433623	144 52.6038978	88.05754325		9 82.84743513
	29 153 77	87.14625204	69 78.8333333	85.6029646	127 98.8333333	85.61353424		9 83.30760732
	30 144 52.60389781	84.36389618	181 98	85.95031696	142 9	85.03603214		
	31 42 83.33333333	89.58557331	70 84.1666666	84.37331648	183 81.3333333	81.64597575		6 83.17549473
	32 93 80.66666667	86.02385158	143 77.3333333	83.32889042	126 7	80.88916206		
	33 187 106.3986791	88.05165027	185 90	87.03314169	153 7	84.37552107		9 85.51803893
	34 147 78.5 35 85 90	90.5893943	127 98.8333333	87.76319544	212 93	84.44377713		83. 83.1395318
		84.44494819	146 43.1666666	85.90278438	25 69.8986790	85.33162081		
	36 110 99.33333333 37 30 67.33333333	85.9602498	166 85.6666666	85.48692606	200 5	90,14492071		
	37 30 67.33333333 38 65 67.60389781	87.03933457 84.46945287	176 97.3333333 100 80.83333333	84.62986372 83.83355541	70 84.1666666	83.11455371 91.19409359	L 93 80.6666 219 89.3333	
	00 07 07.00389781	84,40945287	100 80.8333333	83.83300041	/0 84,1006666	91,19409359	219 89.3333	333 81.28000/0/

Highest 20 genotypes for plant height at 1000 random runs

ID	Count at 1000 random runs	Frequency in 1000 random runs	The average GEBV of 1000 random runs	BLUE value
Gen_272	458	0.458	90.5	63.2
Gen_271	423	0.423	89.8	79
Gen_87	408	0.408	89.5	72.3
Gen_256	376	0.376	89.7	78.5
Gen_167	361	0.361	89.1	68.7
Gen_260	361	0.361	89.3	82.7
Gen_95	354	0.354	89	83.3
Gen_248	339	0.339	88.9	84.3
Gen_114	332	0.332	88.6	95.7
Gen_328	328	0.328	88.9	72.7
Gen_270	328	0.328	88.7	92
Gen_116	324	0.324	90	81.8
Gen_34	320	0.32	89	92.5
Gen_274	318	0.318	89	81
Gen_223	314	0.314	89	98.8
Gen_236	290	0.29	88.8	83.2
Gen_178	284	0.284	89.3	79
Gen_288	279	0.279	88.8	87.8
Gen_240	274	0.274	88.8	71.2
Gen_63	271	0.271	88.8	85.9

Acknowledgements

Sask Leafcutters Association Saskatchewan Alfalfa Seed Producers Development Commission

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Mitjcs

saskatchewan pulse Growers

Canadian Centre canadien Light de rayonnement Source synchrotron