

Crop Response to Seed-Row Placed Sulfur Fertilizers

T. King¹, J. Schoenau¹, H. Ahmed¹, R. Hangs¹, S.S. Malhi² and R. Urton¹

¹Department of Soil Science, 51 Campus Drive, University of Saskatchewan, Saskatoon, SK, CANADA S7N 5A8. ²Agriculture & Agrifood Canada (AAFC), Melfort, SK, CANADA S0E 1A0.

Introduction

- Sulfur (S) fertilizers may be applied to wheat, canola and yellow pea crops in the seed-row at the time of seeding. S fertilizers available to growers on the Canadian Prairies include soluble sulfate forms (ammonium sulfate and potassium sulfate); partially soluble forms (calcium sulfate or 'gypsum'); insoluble forms that undergo oxidation (elemental S); and liquid ammonium thiosulfate (ATS) that forms sulfate and elemental S upon application to soil.
- Such fertilizers may be applied in the seed-row at the time of seeding in the spring as a starter nutrient source. Depending on fertilizer S form, rate and crop, there is a limit to how much can be safely placed in the seed-row.

Study Objectives

 To evaluate the crop response in yield and plant S uptake to different S fertilizer forms added in the seed-row over two growing seasons.

Materials and Methods

- Study Sites:
 - 1) Brown Chernozem; Ardill Association loam near Central Butte, SK.
 - 2) Gray Luvisol; Waitville Association loam near Star City, SK.

Cropping history of the two sites was typical, with fields well managed and having history of fertilizer use. Soil available S was considered marginal while soil available P was marginal to sufficient.

Seeding and Fertilization:

Plots (3.0 m X 1.0 m) were seeded at a row spacing of 25 cm (Fig. 1) to: HRS wheat (Waskeda), canola (Liberty Link-150) and yellow peas (Meadow). S and P (as P_2O_5 , 11-52-0, MAP) fertilizer treatments were applied in the seed-row during seeding (Table 1).

Treatments were replicated 4 times for each crop. Prior to seeding, wheat and canola plots were broadcast fertilized with 100 kg N ha⁻¹ as urea.

Plant Sampling:

1.0 m row-length crop samples (Fig. 2) were harvested in each treatment.

Fig. 1. Single-row seeding and

Fig. 2. 1.0 m row-length canola samples.

Table 1. Treatments and application rat	tes.			
Treatments	Ap	plication Rates		
	\mathbf{N}^{\ddagger}	S	P_2O_5	
		(kg ha ⁻¹)		
Control (N only)	100			
Control $(N + P \text{ only})$	100		20	
Ammonium sulfate (12-0-0-24)	100	20		
Ammonium thiosulfate (15-0-0-26) [†]	100	20		
Gypsum (Ca=23%; S=16%)	100	20		
Potassium sulfate (0-0-50-17)	100	20		
Elemental sulfur (0-0-0-90)	100	20		
Ammonium sulfate + P	100	20	20	
Ammonium thiosulfate + P	100	20	20	
Gypsum + P	100	20	20	
Potassium sulfate + P	100	20	20	
Elemental S + P	100	20	20	

broadcast as urea (40-0-0) to wheat and canola crops pre-seed. No the broadcast pre-seed to yellow pea crop.

§P added as P₂O₅ equivalent using 11-52-0 (monoammonium phosphate)

Table 2. Sulfur uptake in v	wheat, canola and yellow	w pea in Brown Chernoz	em and Gray Luvisol soils.
			•

	WHEAT					CANOLA				YELLOW PEA				
Treatments	Brown	Gray	Brown	Gray		Brown	Gray	Brown	Gray	Brown	Gray	Brown	Gray	
	Chernozem	Luvisol	Chernozem	Luvisol		Chernozem	Luvisol	Chernozen	n Luvisol	Chernoze	m Luvisol	Chernozem	Luvisol	
			Total S Uptake (kg ha ⁻¹)											
	2013		2014		2013		2014		2013		2014			
Control (N only)	14.5 ab	16.2 bc	15.6 bc	11.7 a		24.0 a	22.0 a	45.2 bc	15.5 c	10.8 a	15.8 a	9.8 ab	9.7 ab	
Control (N + P only)	14.8 ab	15.6 bc	15.3 c	10.4 a		28.3 a	21.6 a	58.6 abc	12.8 c	12.3 a	12.5 a	13.9 ab	7.1 b	
Ammonium sulfate	17.6 ab	15.3 bc	19.6 abc	14.3 a		27.8 a	32.8 a	65.6 ab	20.6 bc	10.3 a	18.3 a	13.0 ab	13.9 a	
Ammonium thiosulfate	16.7 ab	14.3 c	22.5 a	15.6 a		27.9 a	27.3 a	58.3 abc	22.9 abc	15.1 a	19.7 a	14.5 a	10.2 ab	
Gypsum	18.4 ab	21.1 ab	17.7 abc	13.8 a		26.3 a	41.6 a	47.8 bc	23.5 abc	14.3 a	17.3 a	9.0 b	8.2 ab	
Potassium sulfate	23.9 a	23.9 a	19.5 abc	13.8 a		25.7 a	41.1 a	38.3 c	18.3 c	11.0 a	9.4 a	9.8 ab	6.2 b	
Elemental sulfur	15.6 ab	17.1 bc	21.7 ab	13.6 a		22.1 a	36.9 a	61.1 abc	19.5 c	10.8 a	20.1 a	11.6 ab	9.4 ab	
Ammonium sulfate + P	14.6 ab	16.8 bc	16.9 abc	12.9 a		27.4 a	28.0 a	58.8 abc	34.0 a	15.0 a	18.0 a	14.2 a	8.3 ab	
Ammonium thiosulfate + P	12.8 b	15.7 bc	17.3 abc	11.7 a		23.0 a	39.4 a	58.7 abc	32.6 ab	12.9 a	21.4 a	10.9 ab	10.3 ab	
Gypsum + P	17.1 ab	20.0 abc	17.6 abc	12.5 a		29.2 a	37.5 a	71.4 a	21.9 abc	12.7 a	16.6 a	12.7 ab	11.1 ab	
Potassium sulfate + P	12.0 b	15.9 bc	16.6 abc	12.8 a		22.7 a	27.3 a	56.9 abc	14.1 c	8.4 a	15.3 a	12.4 ab	9.1 ab	
Elemental S + P	16.5 ab	15.5 bc	14.3 c	13.3 a		29.4 a	19.6 a	51.6 abc	14.6 c	9.6 a	15.9 a	11.4 ab	11.3 ab	
P × S Fertlizer effect														
P Value ($P \le 0.05$)	0.038	< 0.0001	0.581	0.989		0.953	0.046	0.570	0.103	0.479	0.078	0.808	0.775	
F Value	2.18	5.33	0.76	0.11		0.38	2.13	0.78	2.00	0.99	1.89	0.45	0.50	
SFM++	2 091	1 495	2 19	1 98		4 486	5 957	8.07	4 28	2 469	2 964	1.80	2 25	

Fig. 3. Wheat, canola and yellow pea grain yield (t ha⁻¹) harvested at: Brown Chernozem (Central Butte) and Gray Luvisol (Star City) sites in fall 2013 and fall 2014. Error bars denote standard error of the treatment means with N=48 and n = 4. (MAP = Monoammonium Phosphate; AS = Ammonium Sulfate; ATS = Ammonium Thiosulfate; PS = Potassium Sulfate and ES = Elemental Sulfur).

Results and Discussion

- Addition of sulfate and ATS increased S uptake in wheat, canola and pea, at Brown Chernozem and Gray Luvisol sites in 2013 (Table 2).
- S uptake in canola at Brown Chernozem site for all treatments in 2014 was greater than 2013, reflecting better growing conditions and grain yields in 2014, compared to 2013.
- Calcium sulfate (gypsum) plus MAP, and potassium sulfate plus MAP added to canola at Gray Luvisol site in both years increased yields (Fig. 3).
- The addition of MAP fertilizer did not significantly affect wheat, canola and yellow pea grain yields, consistent with adequate soil available P at sites (Fig. 3).
- Addition of ATS + MAP in seed row reduced germination and emergence of canola and pea at both sites in 2013 and 2014, owing to problems in separation between liquid fertilizer and seed.
- Limited response of wheat to addition of S
 fertilizers at Brown Chernozem and Gray Luvisol
 sites in both years of the study suggests that of the
 three crops evaluated, wheat is least responsive to
 S fertilization.
- Subsoil reserves of sulfate in the Brown
 Chernozem soil likely contributed to lack of
 response of any crop to added S fertilizer in 2013,
 while high moisture conditions in 2014 resulted in
 response to S, despite the presence of sulfate at
 depth.

Conclusions

- Thiosulfate and sulfate sources, especially calcium sulfate (gypsum), applied in the seed-row at 20 kg S ha⁻¹ were generally effective in enhancing S uptake and yield of canola in these marginally S deficient soils.
- Responses to seed-placed S fertilizer depend on S fertilizer form, crop, growing conditions, soil S status and factors affecting seed safety.

Acknowledgements

Saskatchewan Agricultural Development Fund
Saskatchewan Canola Development Commission
Saskatchewan Pulse Growers
Western Grains Research Foundation